14 research outputs found

    Fast strategies in biased Maker--Breaker games

    Full text link
    We study the biased (1:b)(1:b) Maker--Breaker positional games, played on the edge set of the complete graph on nn vertices, KnK_n. Given Breaker's bias bb, possibly depending on nn, we determine the bounds for the minimal number of moves, depending on bb, in which Maker can win in each of the two standard graph games, the Perfect Matching game and the Hamilton Cycle game

    Maker-Breaker total domination games on cubic graphs

    Full text link
    We study Maker-Breaker total domination game played by two players, Dominator and Staller on the connected cubic graphs. Staller (playing the role of Maker) wins if she manages to claim an open neighbourhood of a vertex. Dominator wins otherwise (i.e. if he can claim a total dominating set of a graph). For certain graphs on n6n\geq 6 vertices, we give the characterization on those which are Dominator's win and those which are Staller's win

    Pozicione igre na grafovima

    Get PDF
    \section*{Abstract} We study Maker-Breaker games played on the edges of the complete graph on nn vertices, KnK_n, whose family of winning sets \cF consists of all edge sets of subgraphs GKnG\subseteq K_n which possess a predetermined monotone increasing property. Two players, Maker and Breaker, take turns in claiming aa, respectively bb, unclaimed edges per move. We are interested in finding the threshold bias b_{\cF}(a) for all values of aa, so that for every bb, b\leq b_{\cF}(a), Maker wins the game and for all values of bb, such that b>b_{\cF}(a), Breaker wins the game. We are particularly interested in cases where both aa and bb can be greater than 11. We focus on the \textit{Connectivity game}, where the winning sets are the edge sets of all spanning trees of KnK_n and on the  \textit{Hamiltonicity game}, where the winning sets are the edge sets of all Hamilton cycles on KnK_n. Next, we consider biased (1:b)(1:b) Avoider-Enforcer games, also played on the edges of KnK_n. For every constant k3k\geq 3 we analyse the kk-star game, where Avoider tries to avoid claiming kk edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games, the strict and the monotone, and for each provide explicit winning strategies for both players. Consequentially, we establish bounds on the threshold biases f^{mon}_\cF, f^-_\cF and f^+_\cF, where \cF is the hypergraph of the game (the family of target sets). We also study the monotone version of K2,2K_{2,2}-game, where Avoider wants to avoid claiming all the edges of some graph isomorphic to K2,2K_{2,2} in KnK_n.   Finally, we search for the fast winning strategies for Maker in Perfect matching game and Hamiltonicity game, again played on the edge set of KnK_n. Here, we look at the biased (1:b)(1:b) games, where Maker's bias is 1, and Breaker's bias is b,b1b, b\ge 1.\section*{Izvod} Prou\v{c}avamo takozvane Mejker-Brejker (Maker-Breaker) igre koje se igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n, \v{c}ija familija pobedni\v{c}kih skupova \cF obuhvata sve skupove grana grafa GKnG\subseteq K_n koji imaju neku monotono rastu\'{c}u osobinu. Dva igra\v{c}a, \textit{Mejker} (\textit{Pravi\v{s}a}) i \textit{Brejker} (\textit{Kva\-ri\-\v{s}a}) se smenjuju u odabiru aa, odnosno bb, slobodnih grana po potezu. Interesuje nas da prona\dj emo grani\v{c}ni bias b_{\cF}(a) za sve vrednosti pa\-ra\-me\-tra aa, tako da za svako bb, b\le b_{\cF}(a), Mejker pobe\dj uje u igri, a za svako bb, takvo da je b>b_{\cF}(a), Brejker pobe\dj uje. Posebno nas interesuju slu\v{c}ajevi u kojima oba parametra aa i bb mogu imati vrednost ve\'cu od 1. Na\v{s}a pa\v{z}nja je posve\'{c}ena igri povezanosti, gde su pobedni\v{c}ki skupovi  grane svih pokrivaju\'cih stabala grafa KnK_n, kao i igri Hamiltonove konture, gde su pobedni\v{c}ki skupovi grane svih Hamiltonovih kontura grafa KnK_n. Zatim posmatramo igre tipa Avojder-Enforser (Avoider-Enforcer), sa biasom (1:b)(1:b), koje se tako\dj e igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n. Za svaku konstantu kk, k3k\ge 3 analiziramo igru kk-zvezde (zvezde sa kk krakova), u kojoj \textit{Avojder} poku\v{s}va da izbegne da ima kk svojih grana incidentnih sa istim \v{c}vorom. Posmatramo obe verzije ove igre, striktnu i monotonu, i za svaku dajemo eksplicitnu pobedni\v{c}ku strategiju za oba igra\v{c}a. Kao rezultat, dobijamo gornje i donje ograni\v{c}enje za grani\v{c}ne biase f^{mon}_\cF, f^-_\cF i f^+_\cF, gde \cF predstavlja hipergraf igre (familija ciljnih skupova). %fmonf^{mon}, ff^- and f+f^+. Tako\dj e, posmatramo i monotonu verziju K2,2K_{2,2}-igre, gde Avojder \v{z}eli da izbegne da graf koji \v{c}ine njegove grane sadr\v{z}i graf izomorfan sa K2,2K_{2,2}. Kona\v{c}no, \v{z}elimo da prona\dj emo strategije za brzu pobedu Mejkera u igrama savr\v{s}enog me\v{c}inga i Hamiltonove konture, koje se tako\dj e igraju na granama kompletnog grafa KnK_n. Ovde posmatramo asimetri\v{c}ne igre gde je bias Mejkera 1, a bias Brejkera bb, b1b\ge 1

    Pozicione igre na grafovima

    Get PDF
    \section*{Abstract} We study Maker-Breaker games played on the edges of the complete graph on nn vertices, KnK_n, whose family of winning sets \cF consists of all edge sets of subgraphs GKnG\subseteq K_n which possess a predetermined monotone increasing property. Two players, Maker and Breaker, take turns in claiming aa, respectively bb, unclaimed edges per move. We are interested in finding the threshold bias b_{\cF}(a) for all values of aa, so that for every bb, b\leq b_{\cF}(a), Maker wins the game and for all values of bb, such that b>b_{\cF}(a), Breaker wins the game. We are particularly interested in cases where both aa and bb can be greater than 11. We focus on the \textit{Connectivity game}, where the winning sets are the edge sets of all spanning trees of KnK_n and on the  \textit{Hamiltonicity game}, where the winning sets are the edge sets of all Hamilton cycles on KnK_n. Next, we consider biased (1:b)(1:b) Avoider-Enforcer games, also played on the edges of KnK_n. For every constant k3k\geq 3 we analyse the kk-star game, where Avoider tries to avoid claiming kk edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games, the strict and the monotone, and for each provide explicit winning strategies for both players. Consequentially, we establish bounds on the threshold biases f^{mon}_\cF, f^-_\cF and f^+_\cF, where \cF is the hypergraph of the game (the family of target sets). We also study the monotone version of K2,2K_{2,2}-game, where Avoider wants to avoid claiming all the edges of some graph isomorphic to K2,2K_{2,2} in KnK_n.   Finally, we search for the fast winning strategies for Maker in Perfect matching game and Hamiltonicity game, again played on the edge set of KnK_n. Here, we look at the biased (1:b)(1:b) games, where Maker's bias is 1, and Breaker's bias is b,b1b, b\ge 1.\section*{Izvod} Prou\v{c}avamo takozvane Mejker-Brejker (Maker-Breaker) igre koje se igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n, \v{c}ija familija pobedni\v{c}kih skupova \cF obuhvata sve skupove grana grafa GKnG\subseteq K_n koji imaju neku monotono rastu\'{c}u osobinu. Dva igra\v{c}a, \textit{Mejker} (\textit{Pravi\v{s}a}) i \textit{Brejker} (\textit{Kva\-ri\-\v{s}a}) se smenjuju u odabiru aa, odnosno bb, slobodnih grana po potezu. Interesuje nas da prona\dj emo grani\v{c}ni bias b_{\cF}(a) za sve vrednosti pa\-ra\-me\-tra aa, tako da za svako bb, b\le b_{\cF}(a), Mejker pobe\dj uje u igri, a za svako bb, takvo da je b>b_{\cF}(a), Brejker pobe\dj uje. Posebno nas interesuju slu\v{c}ajevi u kojima oba parametra aa i bb mogu imati vrednost ve\'cu od 1. Na\v{s}a pa\v{z}nja je posve\'{c}ena igri povezanosti, gde su pobedni\v{c}ki skupovi  grane svih pokrivaju\'cih stabala grafa KnK_n, kao i igri Hamiltonove konture, gde su pobedni\v{c}ki skupovi grane svih Hamiltonovih kontura grafa KnK_n. Zatim posmatramo igre tipa Avojder-Enforser (Avoider-Enforcer), sa biasom (1:b)(1:b), koje se tako\dj e igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n. Za svaku konstantu kk, k3k\ge 3 analiziramo igru kk-zvezde (zvezde sa kk krakova), u kojoj \textit{Avojder} poku\v{s}va da izbegne da ima kk svojih grana incidentnih sa istim \v{c}vorom. Posmatramo obe verzije ove igre, striktnu i monotonu, i za svaku dajemo eksplicitnu pobedni\v{c}ku strategiju za oba igra\v{c}a. Kao rezultat, dobijamo gornje i donje ograni\v{c}enje za grani\v{c}ne biase f^{mon}_\cF, f^-_\cF i f^+_\cF, gde \cF predstavlja hipergraf igre (familija ciljnih skupova). %fmonf^{mon}, ff^- and f+f^+. Tako\dj e, posmatramo i monotonu verziju K2,2K_{2,2}-igre, gde Avojder \v{z}eli da izbegne da graf koji \v{c}ine njegove grane sadr\v{z}i graf izomorfan sa K2,2K_{2,2}. Kona\v{c}no, \v{z}elimo da prona\dj emo strategije za brzu pobedu Mejkera u igrama savr\v{s}enog me\v{c}inga i Hamiltonove konture, koje se tako\dj e igraju na granama kompletnog grafa KnK_n. Ovde posmatramo asimetri\v{c}ne igre gde je bias Mejkera 1, a bias Brejkera bb, b1b\ge 1

    Fast Strategies in Waiter-Client Games on KnK_n

    Full text link
    Waiter-Client games are played on some hypergraph (X,F)(X,\mathcal{F}), where F\mathcal{F} denotes the family of winning sets. For some bias bb, during each round of such a game Waiter offers to Client b+1b+1 elements of XX, of which Client claims one for himself while the rest go to Waiter. Proceeding like this Waiter wins the game if she forces Client to claim all the elements of any winning set from F\mathcal{F}. In this paper we study fast strategies for several Waiter-Client games played on the edge set of the complete graph, i.e. X=E(Kn)X=E(K_n), in which the winning sets are perfect matchings, Hamilton cycles, pancyclic graphs, fixed spanning trees or factors of a given graph.Comment: 38 page

    Spanning Structures in Walker--Breaker Games

    No full text
    We study the biased (2:b)(2:b) Walker--Breaker games, played on the edge set ofthe complete graph on nn vertices, KnK_n. These games are a variant of theMaker--Breaker games with the restriction that Walker (playing the role ofMaker) has to choose her edges according to a walk. We look at the two standardgraph games -- the Connectivity game and the Hamilton Cycle game and show thatWalker can win both games even when playing against Breaker whose bias is ofthe order of magnitude n/lnnn/ \ln n
    corecore